Search This Blog

What are CCD And CMOS Image Sensors?

Q: What are CCD And CMOS Image Sensors?

A:
Until recently, CCDs were the only image sensors used in digital cameras. They have been well developed through their use in astronomical telescopes, scanners, and video camcorders. However, there is a new challenger on the horizon, the CMOS image sensor that promises to eventually become the image sensor of choice in a large segment of the market.

Charge-coupled devices (CCDs) capture light on the small photosites on their surface and get their name from the way that charge is read after an exposure. To begin, the charges on the first row are transferred to a read out register. From there, the signals are then fed to an amplifier and then on to an analog-to-digital converter. Once the row has been read, its charges on the read-out register row are deleted, the next row enter the read-out register, and all of the rows above march down one row. The charges on each row are "coupled" to those on the row above so when one moves down, the next moves down to fill its old space. In this way, each row can be read—one row at a time.

It is technically feasible but not economic to use the CCD manufacturing process to integrate other camera functions, such as the clock drivers, timing logic, and signal processing on the same chip as the photosites. These are normally put on separate chips so CCD cameras contain several chips, often as many as 8, and not fewer than 3.

CMOS Image Sensors
Image sensors are manufactured in wafer foundries or fabs. Here the tiny circuits and devices are etched onto silicon chips. The biggest problem with CCDs is that there isn't enough economy of scale. They are created in foundries using specialized and expensive processes that can only be used to make CCDs. Meanwhile, more and larger foundries across the street are using a different process called Complementary Metal Oxide Semiconductor (CMOS) to make millions of chips for computer processors and memory. This is by far the most common and highest yielding process in the world. The latest CMOS processors, such as the Pentium III, contain almost 10 million active elements. Using this same process and the same equipment to manufacturer CMOS image sensors cuts costs dramatically because the fixed costs of the plant are spread over a much larger number of devices. (CMOS refers to how a sensor is manufactured, and not to a specific sensor technology.) As a result of this economy of scale, the cost of fabricating a CMOS wafer is one-third the cost of fabricating a similar wafer using a specialized CCD process.

Here are some things you might like to know about CMOS image sensors:


- CMOS image quality is now matching CCD quality in the low- and mid-range, leaving only the highend image sensors still unchallenged.

- CMOS image sensors can incorporate other circuits on the same chip, eliminating the many separate chips required for a CCD. This also allows additional on-chip features to be added at little extra cost. These features include anti-jitter (image stabilization) and image compression. Not only does this make the camera smaller, lighter, and cheaper; it also requires less power so batteries last longer.

- CMOS image sensors can switch modes on the fly between still photography and video. However, video generates huge files so initially these cameras will have to be tethered to the mothership (the PC) when used in this mode for all but a few seconds of video. However, this mode works well for video conferencing although the cameras can't capture the 20 frames a second needed for full-motion video.


- While CMOS sensors excel in the capture of outdoor pictures on sunny days, they suffer in low light conditions. Their sensitivity to light is decreased because part of each photosite is covered with circuitry that filters out noise and performs other functions. The percentage of a pixel devoted to collecting light is called the pixel’s fill factor. CCDs have a 100% fill factor but CMOS cameras have much less. The lower the fill factor, the less sensitive the sensor is and the longer exposure times must be. Too low a fill factor makes indoor photography without a flash virtually impossible. Tocompensate for lower fill-factors, micro-lenses can be added to each pixel to gather light from the insensitive portions of the pixel and "focus" it down to the photosite. In addition, the circuitry can be reduced so it doesn't cover as large an area.


- CMOS sensors have a higher noise level than CCDs so the processing time between pictures is higher as these sensors use digital signal processing (DSP) to reduce or eliminate the noise. The DSP is one early camera (the Svmini), executes 600,000,000 instructions per picture.

0 comments:

Post a Comment

Please enter you comments or your question what ever you have regarding Graphic Designing. Thanks

Blog Widget by LinkWithin